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ABSTRACT 
The "nastiness" of a function $(x) is defined. We then discuss minimum 
nastiness interpolation to a set of given points (xk, t~k), as well as minimum 
nastiness curve fitting, where the given values t~k have errors tSk. 

1. Introductian. Curve fitting is the art of  drawing a smooth curve through 
given, experimental points so as to strike a compromise between the desire to 
come close to the points and the desire to have a smooth curve which is in ac- 
cordance with whatever additional information we may possess about the true 
curve. For  example, we may know from other considerations that the true curve 
y(x) is such that y is positive, or we may have much more detailed information, 

e.g., y(x) is a straight line. 
The usual approach dates back to Gauss [1]. Let f(a,  x) be a family of  curves 

depending upon a parameter a. Let Xo, Xl, .. ', xr be the given abscissae, Yo, Yl, "", yr  
be the measured ordinates, and 6o,5~,...,6r be the standard errors. The chi- 
square value of the fit is 

K 
(1.1) X = ]~ [Y'--f(a'Xk)]2 

k =0 2(6k) 2 

and the " l ikel ihood" of the fit is 

(1.2) P(a) = exp ( - X). 

We then vary the parameter a so as to maximize the likelihood, i.e., so as to 

minimize the sum of squares (1.1). 
If  the family of  curves depends upon several parameters al,a2 "",au, say, 

there is no change in principle. The likelihood P = exp ( - X )  is now a function 

of  these M parameters, and we maximize P, or minimize X, with respect to vari- 

tions of  all these M parameters. 
This scheme works well if we possess large amounts of  a priori information. 

e.g., if we know that the, data should fall on a straight line. Statistical theory 

then enables us to find the best straight line, and to decide whether our expectation 
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of a good straight line fit is confirmed, or contradicted, by the experimental 
values, within some preassigned confidence level. 

But the scheme works very much less well if we possess no a priori information 
whatever about the fitting function, beyond a vague feeling that it ought to be 
"smooth". One may fit with polynomials of increasing degree, stopping when 
an increase of the degree of the polynomial no longer leads to a satisfactory 
improvement in the likelihood of the fit. However, many functions of simple 
functional form cannot be approximated well by polynomials of low degree. 
For example, f (x)  = exp ( - 5x) in the interval (0, 1) would require a polynomial 
of quite high degree to give a satisfactory fit. Low-order polynomial fitting pre- 
judices us against such a perfectly reasonable function. Functional transformations 
are possible, e.g., we may try a fit to logf(x) rather than to f(x),  but there is an 
infinity of functional transformations and no simple way of selecting between 
them. 

In this paper we present an alternative approach, which we believe to be new 
and worthy of further study. We start by defining the q-nastiness Nq(~b) of a given 
function ~b(x), in such a way that a horizontal straight line has nastiness zero, 
and such that the nastiness increases as the curve becomes less "smooth". We 
then solve the minimum problem: find the curve of minimum nastiness passing 
exactly through a set of given points. We then proceed to the problem of minimum 
nastiness interpolation, so as to get a criterion for a reasonable choice of the 
parameter q. Thereafter we allow our points to have errors 6k, and we discuss the 
variational problem of maximizing the "extended likelihood" 

(1.3) Q = F(N) exp ( - X) 

where F(N) is some monotonically decreasing, differentiable function of the 
nastiness N. In spite of the apparent arbitrariness involved in the choice of the 
function F(N), it turns out that we are led to a mere one-parameter family of 
minimum nastiness curve fits. Finally, in the last section of the paper, we suggest 
what appears to us to be a reasonable choice of the function F(N). 

Before giving our definition of nastiness, in Section 2, let us conclude this 
introduction by showing that no simple definition of nastiness can be satisfactory. 
We restrict ourselves, without loss of generality, to functions ~b(x) defined on the 
closed interval (0, 1) of the x-axis. The simplest choice of a "nastiness" consistent 
with zero nastiness for horizontal straight lines and positive definite nastiness 
for all other curves is undoubtedly 

(1.4) M(~) = Jo  k--d-~] dx. 

Now consider the problem: Minimize M(~b) subject to qb(xk) = Yk for a given 
set of points (xk, Yk), all Xk in the interval (0,1). This is a straightforward problem 
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in the calculus of variations, with an exceedingly simple answer: we merely connect 
the given points by straight line segments l(2) 

The fact that this solution fails to have a continuous first derivative may be 
surprising, but should not be so. The existence of (1.4) requires that the first 
derivative be a square integrable function, no more than that. Piece-wise continuous 
first derivatives are consistent with this, and the variational solution makes use 
of  this freedom. 

This "solut ion" is however hardly what we mean intuitively by " s mo o t h "  
function ! The intuitive concept of smoothness requires that ~b(x) have derivatives 
of all orders, i.e., that ~b(x) is an ana ly t i c  function of  z = x + iy over a region 
of the z-plane including the real line segment (0, 1). 

One may be tempted to get around the difficulty by including some higher 
derivatives in an extended definition of nastiness. For  example we may extend 
(1.4) to read 

(1.50 

where q is a parameter. The resulting minimum problem is slightly more compli- 
cated to discuss but the solution is still inconsistent with our intuitive notions 
of  smoothness, i.e., still not an analytic function. This time, the second derivatives 
have finite discontinuities at the given abscissae xk. 

2. Definition of nastiness. No finite number of derivatives in a definition 
of the nastiness can ensure that the minimum nastiness problem leads to an 
analytic function of x. However, we can define the nastiness by an integral over 
an infinite series involving all derivatives of the function q~(x). Our definition is 

fo (2.1) N,(~) = dx  ~, ~. -d-~7 ] . 

The quantity q is a real parameter, whose value will be fixed later on, in specific 
cases. For the moment, we declare the integral (2.1), if it exists, to be the 
"q-nastiness" of ~(x). 

The choice of N as a homogeneous quadratic form in q~ has the desirable effect 
of  making the associated minimum problem linear. Omission of the term s = 0 
from the infinite sum in (2.1) means that N is invariant under a vertical displace- 
ment of the function, and N = 0 for all horizontal straight lines. Retention of the 
term s = 1 means that sloping straight lines have non-zero nastiness (qm) 2, where 
m is the slope of the line. This choice is made in accordance with the general 

(2) To see this, obseve that the integral (1.4) can be written as a sum of integrals, the kth 
ntegral extending from xk-1 to xk. Each of the sub-integrals is minimized by the straight line 
solution. Q.E.D. 
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preference for fitting of  points by a constant (horizontal straight line) over fitting 
by a sloping straight line. 

The parameter q in (2.1) has the dimension of  a length, and is a scaling factor 
for the variable x. The choice of  q affects the nature of the minimum nastiness 
solution, in a way to be discussed in Section 3. 

The factors st in (2.1) are required in order that some very simple functions 
should have finite nastiness. The sth derivative of  the function 1/(1 + x) equals 
(--)~st(1 + x )  -s-1 . Without the factors s! in (2.1), the infinite series would 
diverge for all non-zero values of q. 

An interesting way of looking at the definition (2.1) is provided by the Taylor 
expansion of the function 4,(z) = 4,(x + iy) around some point x = xo on the 
interval (0, 1) of the x-axis. If  4,(x) is to have finite nastiness, the series in (2.1) 
must converge for every x in (0, 1). If  this series converges, the Taylor series f o r  
4,(Xo + z) converges, with a radius of convergence at least equal to q. Hence, 
a function of finite q-nastiness is analytic over the interior of the oval-shaped 
region R(q) defined by: every point z in R(q) has its least distance to the line 
segment (0, 1) less than or equal to q in value. This region is bounded by two 
semi-circles of  radius q, one to the right of  x = 1, the other to the left of  x = 0 
and by two horizontal straight lines, at Im(z) = iq and at Im(z) = -  iq, res- 
pectively. 

This relationship between the Taylor series and (2.1) can be used to express 
(2.1) as a contour integral, as follows: 

(2.1a) N~(4,) = ~ T r j o  dt dxl4,(x + q e " ) l  2. 
o 

However, we have not found this transformation particularly helpful. 
Of  considerable help, however, is the following simple theorem: Let 4,(x) be 

defined on (0, 1). We define a new function u(x) by subtracting the straight line 
connecting the extreme points, i.e., 

(2.2) u(x) = 4 , (x ) -  4,(0)(1 - x) - 4,(1)x 

so that u(0) = u(1) = 0. A simple calculation then shows that the nastiness of  4, 
and of  u are related by 

(2.3) N,,(4,) = N+(u) + q214,(1) - 4,(0)] 2. 

This simple relationship allows us to specialize to functions u(x) with 
u(0) = u(1) = 0 without loss of  generality. 

3. The function of minimum nastiness passing through given points. Suppose 
we are given L points (x k, Uk), k = 1, 2,. . . ,  L, all x k in the open interval (0,1), plus 
the two extreme points (0,0) and (1,0). We wish to find the function u(x) of 
minimum nastiness passing through these points, i.e., satisfying the conditions 
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(3.1) u (0 )=u(1 )  = 0  U(Xk)=U k k = l , 2 , ' " , L .  

It turns out to be helpful to expressu(x) as a Fourier series: 

oo 

(3.2) u(x)  = ~, Cr, sin (mrrx). 
m = l  

We shall assume rapid convergence of  this series, allowing various interchanges 
of  limiting processes. This assumption will be verified at the end, on hand of  the 
explicit solution. 

We differentiate (3.2) term by term to obtain, for even s, 

cO 

(3.3) dSu/dx  ~ = (  - I) 1!2~ ~, (mn)Scms in (mnx)  s even. 
r a = l  

The result for odd values of  s is similar: the sign in front is altered, and we get 
cosines instead of sines. 

We now square (3.3) and integrate from x = 0 to x = 1. Using the orthogonality 
of  the sine (or cosine, for odd s) functions we obtain the result 

fo t 1 oo (3.4) (d~u/dxS) 2 dx  = ~ ~ (mn)2S(c~ 2 
r a = l  

Substitution of  (3.4) into (2.1) leads to 

1 ~ oo (qmrr)2s 
(3.5) N (u) = E E 2. 

, : t  m : l  (S!)2 

We interchange the order of the summations, and recognize that the sum over s is 
closely related to the power series for the Bessel function Io(z)  of imaginary 
argument. The result is 

o o  

(3.6) N~(u) = -~ ~, 
m = l  

[Io(2mlrq) - 1] (Cm) 2. 

We must minimize (3.6) subject to the conditions arising from (3.1), i.e., subject to 

(2O 

(3.7) ~ cm sin (mTrxk) = u k k = 1, 2 , . . . ,  L .  
m = l  

These conditions are handled in the usual way by introduction of  Langrange 
multipliers Z~, with the result 

L 

(3.8) cm -- [Io(2mrrq) - 1] -1 ~,, Zksin(mrrxk) .  
k = l  
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Zk, w e  substitute (3.8) into (3.7). We define the L-by-L 

~-, sin (mnxk) sin (mnxl) 
Akl ,,,~= 1 lo(2mnq) - 1 

to write the conditions on the Z k in the form 

L 

(3.10) ~-, AkzZl = UR k = 1, 2,. . . ,  L. 
/ = 1  

Let Bkz be the matrix inverse to Au, then (3.10) is solved by 

L 

(3.11) Zk = ~ BktUl k = 1 ,2 , . . . ,  L. 
1 = 1  

This completes the solution of the minimum problem. The matrix A is determined 
by the given abscissas Xk and the chosen value of q, through (3.9); its inverse, 
B, is then determined; this gives the Lagrange multipliers Zk by (3.11), hence 
the Fourier coefficients Cm by (3.8), hence the actual function u(x) by (3.2). 

All that remains is to check that the Fourier series converges well enough to 
permit the various interchanges of limiting processes which have occurred. The 
coefficients cm of (3.8) are bounded by 

Z r~ 
(3.12) [c,[  < Io(2mzcq) with Z = Y, [Zk[. 

k = l  

Since the Bessel function Io(x) behaves exponentially for large real x, the series 
of bounds (3.12) converges. The sine series (3.2) for u(x) then converges absolutely 
and uniformly for all x in (0, 1). Similar arguments suffice for justifying all our 
formal operations in the proof. 

The minimum nastiness itself, (3.6), can be expressed rather simply in terms 
of  the function values Uk. We insert (3.8) into (3.6) for one of the factors 
c,, to obtain 

1 oo L 1 
(3.13) N°(u) = 2  m=l~ /~=1~" Zksin(m~zxg)Cra = ~ k=l" ZRU k • 

Using (3.11) for Zk gives the quadratic form 

1 ~ 
(3.14) N~(u) = ~ ~ UkBuU v 

k,l=l 

We note that the ordinates u k enter explicitly since the matrix B depends on the 
abscissae x k only, not on the ordinates u~. 

We now drop some of the restrictive assumptions. First, suppose that the 
ordinates at x = 0 and x = 1 are not zero, i.e., we are given L + 2 points (x,, q~k) 
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k = 0 , 1 , 2 , . . . , L  + 1, with xo = 0  and XL+~ = 1, with none of the tkk restricted 
to vanish. We define new given values uk in accordance with the transformation 
(2.2) by 

(3.15) uk = c.bk -- Cko(1 -- Xk) -- Ckt.+ lXk. 

This gives uo =UL+t = 0  and thus reduces to the problem we have just solved. 
The solution ~b(x) of the minimum nastiness problem is related to u(x) by (2.2), 
and the minimum nastiness itself is given by (2.3). This latter result can be re- 
written as a quadratic form in the given ordinates 0k 

l L + I  

( 3 . 1 6 )  N q ( ¢ )  --'-- ~ E ~ k C k l ~ t  
k,l=O 

where the matrix C is directly related to the matrix B of the simpler problem via: 

(3.17a) Ckz = Bu for 1 -< k , l  <_ L 

L 

(3.17b) Cko = Cok = -- ~, Bu(1 -- x~) for 1 --< k -< L 
l = l  

/. 

(3.17c) Ck,L+I. = C L + I , k  = -  ~ BklXl f o r  1 <_ k < _ L 
1=1 

L 

(3.17d) Coo = 2q 2 + ~ ( 1 -  Xk)Bu(1 -- xt) 
k,l = l 

L 

(3.17e) C L + I . L +  1 = 2q 2 + ~ XkB~dX t 
k,l ffi 1 

L 

(3.170 CO L+I = CL+I,O = -- 2q 2 + ~ xkBu(1--  xt). 
k,l= 1 

Next we remove the restriction that the function values at x = 0 and x = 1, 
the endpoints of the interval, should be given at all. It is just as easy to see how 
the results are changed if any one abscissa Xk and associated function value ~b k 
are removed from the set of given values. The function ~(x) of minimum nastiness 
must now fit function values ~b m at x = xm for all m ~ k, but ~b(x) is unrestrained 
at Xk. Let q~k be its actual value at x = Xk, a value that is so far unknown. Then 
the nastiness is given by (3.16) which we may now minimize with respect to the 
unknown q~k. This procedure decides the best value of ~b k, and solves the problem. 

Extension of this scheme to the case where more than one function value is 
omitted from the given list is obvious, and leads to a simple problem in linear 
algebra. 

In concluding this section, we discuss the role of the parameter q in the definition 
(2.1) of the nastiness. It is apparent from (3.9) that q enters explicitly into the 
solution of the minimum nastiness problem, as expected. The function of minimum 
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nastiness through a given set of points depends upon q. We now discuss the two 
limiting cases, large q and small q. 

If q is large, the bound (3.12) on the Fourier coefficients is a rapidly decreasing 
function of the order m of the coefficient cm. Thus the Fourier series converges 
rapidly, and can be approximated adequately by its first few terms. Excluding 
the outer values ~bo and tkL+ 1 (since they do not enter the Fourier series), there 
are L function values tkk to be fitted by a trigonometric polynomial. This requires, 
in general, L independent terms. Thus, in the limit of very large q, the function 
~(x) consists of a straight line connecting the given values tko and ~bz÷l, plus 
a trigonometric polynomial with exactly L terms, chosen so that ~b(x) passes 
through all the given points. 

Quite apart from the rather special appearance of a low order trigonometric 
polynomial, the limiting case of high q gives rise to extremely large and "cap- 
ricious" values of the nastiness. This can be seen from equation (3.6): in this 
limit, the coefficients c m retain significant values until m = L, then become very 
small. Since the Bessel functions increase exponentially with large positive argu- 
ment, the nastiness for high q is approximated well by 

(3.18) Nq(u)  ~- l [ Io (2Lrrq )  - 1] (cL) 2 (Limit of large q). 

The coefficient CL depends only on the given function values, not on q, in this 
limit, since there are just enough coefficients retained to fit all the given function 
values. Hence Nq(u)  depends on q through the Bessel function in front, and this 
becomes exponentially large. Furthermore, small changes in the given function 
values can result in significant changes in cL, so that the nastiness is not only 
disturbingly large, but a very sensitive function of the given information. 

The opposite limiting case, q very small, is equally unsatisfactory. Over most 
of the range of integration in (2.1), the infinite series in the integrand can be 
replaced by its leading term, s = 1. In effect, then, we are reduced to the over- 
simplified definition (1.4) of the nastiness. This definition leads to a series of 
straight line segments connecting the given points. The sharp corners of this 
"solution" are inconsistent with convergence of the series in (2.1), so that the 
true solution must differ from the straight line segments at least in the immediate 
neighbourhood of the given points. The sharp corners must be smoothed over. 
It is easy to see, however, that this smoothing process takes place in distances 
of the order of q from the given abscissae Xk. Hence, if q is small compared to all 
distances between successive Xk, the minimum nastiness solution reduces to a 
series of straight line segments over most of the interval, the exceptions being 
a rounding off of the sharp corners in the q-neighbourhood of each given point 
(Xk, Ckk). Such a solution does not agree with our intuitive feeling of a "smooth 
curve through the given points". 
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4 Minimum nastiness interpolation. Although it is not often presented this 
way, interpolation is in essence a probabilistic question, with the choice of a 
"best" interpolation method depending upon the universe of functions to which 
we wish to interpolate. The usual polynomial interpolation is by no means "best 
for all "smooth functions". 

Take as an example the function 

b 2 
(4.1) f ( x )  = (x  - ½)2 + b 2 

which would generally be considered a smooth function. It has a peak at x = ½, 
of halfwidth b. We divide the interval (0, 1) into K = L + 1 equal intervals, each 
of length I lK ,  and make our "given" function values be 

(4.2) x k = k / K  ~k =f(xk) k = 0, 1, 2,..., K. 

The question arises to what accuracy an interpolation method, based on these 
given values, reproduces the function values (4.1) for x ~ Xk. 

In Figure 1, we show the result of polynomial interpolation, for b = 0.1 and 
K = 10. The interpolation polynomial fits the given values, as it must, and it 
approximates closely to the function in the immediate neighbourhood of the 
central peak. But away from this peak, the interpolation polynomial is nowhere 
near the function. Taking more given points, say K = 20, makes the maximum 
discrepancy worse, not better. 

This does not contradict the theorem of Weierstrass [2] that every function, 
subject only to very mild conditions, can be approximated to any accuracy by 
a polynomial of sufficiently high order. In spite of frequent statements to the 
contrary, the Weierstrass theorem is not suitable as a basis for interpolation 
theory. The interpolation polynomials actually used are the polynomials of 
lowest order which fit the given function values. By assumption, we do not know 
the other function values to start with. Hence it is of no help at all to be informed 
that a polynomial of much higher degree could be drawn so as to fit f ( x )  every- 
where to high accuracy. So what? How do we find that superior polynomial 
from the given information? 

One may assert that the interpolation polynomial of lowest order passing 
through all the given points is by definition the "smoothest curve through the 
points". This is possible logically, but we would then be forced to assert that the 
solid curve of Figure 1, rather than the dashed curve, is the "smoothest" fit to 
the given points. 

The concept of minimum nastiness allows an alternative procedure: 
the "smoothest" function through a given set of points is now taken to be the 
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Figure 1. The dashed curve is function (4.1) with b = 0.1. The solid curve is the interpolation 
polynomial through the given points. 

function of minimum nastiness through these points. In Figure 2, we show the 
minimum nastiness curve through the same points as in Figure 1, with the choice 
q =~0.05. It is apparent that minimum nastiness interpolation is preferable to 
polynomial interpolation for the function (4.1). In fact, it was impossible to se- 
parate the solid and dashed curves on this Figure. 

Since the definition of  nastiness contains a parameter q, we must make a choice 
regarding the value of  q. The discussion at the end of Section 3 has shown that 
very large q and very small q are unsuitable. In the remainder of  this paper 
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Figure 2. Minimum nastiness interpolation through the same points as in Figure 4.1. The highest 
deviation from function (4.1) is 0.008 at x = 4.5 and x = 5.5. 

we shall restrict ourselves to equally spaced abscissae, i.e., the given x-values 
are always taken to be(3) 

(4.3) x k = k / K  k = 0 , 1 , 2 , . . . , K .  

Large  q then means  q >> 1/K, smal l  q means  q ,~. 1/K, and  bo th  these choices 

lead  to  p o o r  results. We  have exper imented  with a number  o f  funct ions  f (x ) ,  
a n u m b e r  o f  interval  sizes h = l /K,  and  with  var ious  choices o f  q. The  best  

m i n i m u m  nast iness in te rpo la t ion  curves are  ob ta ined  in the range 

(4.4) 1/5K < q < 1/K 

(3) Our considerations retain their usefulness even if the points are not exactly equally 
spaced. But if there are really major differences in spacing (e.g., almost all the given points are 
crowded into a small part of the interval (0,1)), no constant value of the parameter q in (2.1) leads 
to satisfactory results. In such a case, the constant q in (2.1) should be replaced by a suitable 
function q(x), such that q(x) is proportional to the average spacing of the given points in the 
neighbohrhood of x. Unfortunately, the minimum nastiness problem with this generalized nasti- 
ness is very much harder to solve. 
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with a good compromise choice being 

(4.5) q =1/2K. 

It is of interest, perhaps, that the value (4.5) of q is the smallest value of q with 
the property: the Taylor series expansions around the various given points Xk, 

between them, define the interpolation function ~b(x) on the whole interval (0, I), 
without the use of analytic continuation. If q falls below 1/2K, the region in the 
middle between any two given points may not be reached by the Taylor expansion 
around either one of these given points. 

Although examples exist, e.g., the function (4.1), for which minimum nastiness 
interpolation is distinctly superior to polynemial interpolation, we do not suggest 
the use of minimum nastiness interpolation as a practical interpolation method 
in the usual sense, of interpolation in a table of function values. For example, 
take the function exp( - 5x) instead of the function (4.1). With K = 20 (21 given 
function values at equally spaced xk), the maximum error from the interpolation 
polynomial is 7.6 x 10 -17. The maximum error of the minimum nastiness inter- 
po!ation, even for the best q, is 2.5 x 10-3; and this disappointing result is 
achieved after very much more labour. 

5. Minimum nastiness curve fitting. In curve fitting, unlike interpolation, 
the "given" points are not specified exactly but have errors attached. We shall 
denote the given values by Yk, their errors by e k. The abscissae are by assumption 
equally spaced, see (4.3). 

Let ~(x) be a "fitted curve", and let 

(5.1) Sk = q~(Xk) k = 0 , 1 , 2 , ' " , K .  

The chi-square value of the fit is then defined by 

K 
(5.2) X = • (~k--Yk) 2 

k=0 2e 2 

The usual maximum likelihood fit is obtained by minimizing this X. This procedure 
is of no interest to us, since for any set of values y~ we can produce a minimum 
nastiness curve which has ~b k = Yk exactly, and hence has X = 0.(4) 

We therefore generalize the criterion for a "good fit" by including the nastiness 
N(q~) explicitly into the criterion. From now on, we shall use q = 1/2K for the 
parameter q, without writing this down every time. We let F(N) be some (not 
yet specified) monotonically decreasing function of N, and we take as our criterion 
of good fit the quantity 

(4) A similar situation occurs in conventional curve fitting procedures. For example, we 
can make X = 0 in polynomial curve fitting by choosing a polynomial of sufficiently high 
order. Procedures are then required for deciding what is the maximum degree of the fitting 
polynomial warranted by the data. 



92 JOHN M. BLATT AND HANOCH GUTFREUND Israel J. Math., 

(5.3) Q = F(N) exp ( - X). 

In this section, we shall see what conclusions can be drawn from (5.3) without 
specifying the function F(N) any further. It turns out that these conclusions are 
surprisingly definite~ The specification of a reasonable choice of F(N) is left to 
section 6. 

We maximize (5.3) in two steps: (1)Assume given ~b k at x = Xk, and vary ~b(x) 
forx ~ Xk. (2) Vary the q~k. Step (1) is identical with the minimum nastiness inter- 
polation problem of Section 4, since given ~k means given X, hence maximizing Q, 
(5.3), means minimizing N. Thus the solution of step 1 is the minimum nastiness 
interpolation curve through the points (Xk, C~k). The nastiness of this curve is 
given by (3.16) as a quadratic form in the ~b k. 

We now turn to step 2, variation of the ~bk. We take logarithm of (5.3) and 
differentiate with respect to ~k" Let 

d lnF(N)  F'(N) 
(5.4) ~ ( N )  = a N  - F ( N )  

where the minus sign has been introduced to make G(N) a positive quantity. 
The minimization conditions can be written in the form 

K 
(5.5) ~k q- g(ek) 2 ~, Ckm~)m ~" Yk k = 0, 1, 2 , - . - ,  K 

m=O 

) (5.6) g = G Z ~)kCkm~)m • 
km=O 

This set of  equations is non-linear in the unknowns ~b k and g, and is not even 
defined until we know what the function G(N) is. 

Nonetheless, we can obtain a surprisingly large amount of information from 
this system of equations as it stands, simply by ignoring Equation (5.6) and treating 
g as a positive parameter whose value is at our disposal. Once g is given, equation 
(5.5) is a set of K + 1 linear equations in the K + 1 unknown values ~bk, with 
a unique solution. Thus, without specifying the function F(N) in (5.3), we are 
led to a mere one-parameter family  of minimum nastiness fitting curves ?p(x) 
to the given points. 

One procedure, by no means unreasonable, is then: construct some typical 
members of  this one-parameter family, and decide by inspection which of  them 
you prefer as the "best fit" to the points. Though obviously a subjective criterion, 
it is surprisingly effective: most people arrive at rather similar conclusions. 

A second procedure is to compute the chi-square value X for each of the fitting 
curves obtained, and to settle on that value of g, and hence that fitting curve 
~b(x), which leads to the highest still acceptable chi-square. This procedure can be 
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mechanized once the highest acceptable chi-square has been specified by the 
investigator. 

A third procedure, discussed in Section 6, is to specify the function F(N) in 
detail, and to solve the non-linear equations (5.5), (5.6) numerically. 

Whichever procedure is used, however, the final fitting curve ~b(x) is going 
to be one of the one-parameter family obtained from (5.5), and this family can be 
discussed in its own right. We now proceed to do so. 

The parameter g can range from 0 to infinity. When g = 0, Equation (5.5) 
is solved by ~b~ = Yk, all k. Thus g = 0 yields the minimum nastiness interpolation 
curve to the given values Yk, without taking into account that these points have 
errors el. The nastiness of this extreme solution is given by 

1 K 

(5.7) N o = ~ ~ YkCk,,,ym. 
k,ra = 0 

This is the maximum value of N for the entire family of fitting curves: as soon 
as we take into account that the points have errors, we are allowed to go to curves 
of lower nastiness than No. 

Since the set of Equations (5.5) is continuous in the parameter g, small positive 
values of g lead to solutions in the neighbourhood of this extreme solution, i.e., 
to values of ~k rather close to the Yk, though no longer precisely equal to 
the Yk" 

The opposite extreme, very large g, clearly weights the nastiness very heavily 
at the expense of the chi-square criterion. A formal mathematical discussion 
tends to become awkward since the matrix Ck, , cannot be inverted.(5) 

However, in any special case the actual solution for large g can be found easily 
enough numerically, and we have found such solutions for many cases. They all 
fall into one pattern, and we therefore conjecture that this pattern is universal: 
to wit, all q5 k are approximately equal to a common value q~, and the fitting curve 
t~(x) is the horizontal straight line ~b(x) = ~b. The constant ~b adjusts itself to 
minimize chi-square, so that ~b is just the conventional weighted mean 

K 

(5.8) q~ = Z wkyk 
k = O  

with the weights 

(~) Direct calculation, based on the definition (3.17), shows that the following identity holds: 

L 

Ckm = 0, for all k. 
ra=O 

Thus the matrix Ck,, has an aigenvector with eigenvalue 0. 
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(5.9) W k  = 
( e k )  - 2 

K 

(era) - 2  
m = O  

The resulting nastiness is very close to zero, but the chi-square value is large 
and is given by 

(5.10) 

where 

(5.11) 

), 
X = ~ y - (f,) z E (em)- 2 

m = O  

K 

y~ = ~, w~(yD'. 
k = 0  

If  this value of chi-square is considered acceptable, then the given points are 
consistent with a horizontal straight line, and this horizontal straight line also 
has minimum nastiness, namely N = 0. If, on the other hand, this value of chi- 
square is considered excessive, the best fitting curve must be obtained from lower 
values of the parameter g, for which the q~k tend to approximate more closely to 
the given values Yk. 

To illustrate the sort of curves one gets, we present a series of curves in Figure 3. 
There are 7 given points, 6 of which have values Yk = 0  with errors ek =0.1. 
The middle point, however, is "out  of line", having Y3 = 1 and e3 = 0.3. The 6 
curves shown are all members of the one-parameter family defined by (5.5), 
with different values of the parameter g (g is listed next to each curve). We see 

1.0 ~ 

O~ - (a)  

! o",°A 
Figure 3. Minimum nastiness curve fitting for various values ofg. 

~ )  T T 
I IT--  

I 

(e) g = 800 l 
(f) g =6500 I 
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how we progress from a tight fit to the points, for small g, to the horizontal 
straight line (5.8) for very large g. 

6. A curve fitting algorithm. The actual choice of the parameter # in the 
one-parameter family of curves obtained from (5.5) can be made by inspection 
of the results, by an a priori choice of a largest acceptable chi-square deviation 
criterion, or finally, by a specific choice of the function F(N) in (5.3). In this 
section, we discuss this last alternative. 

Looking at the curves of Figure 3, we note that it is most unlikely that we 
would wish to opt for an "intermediate" fit such as curves (c) or (d). Among 
the given points, one point is out of line. Either we believe that this deviation 
is real, in which case we opt for a curve such as (a) or (b), or we believe that the 
deviation is spurious, in which case we opt for a curve such as (e) or (f). 

It is possible to find a family of functions F(N) such that the criterion of good- 
ness of fit, the quantity Q of Equation (5.3), has two local maxima, one corres- 
ponding to "belief",  the other to "scepticism", regarding the one point that is 
out of line. By adjusting one parameter which, in essence, measures the extent 
of our scepticism, one or the other of these maxima becomes the absolute maxi- 
mum, and hence the chosen solution. 

The family which we have chosen to investigate in some detail is 

( (6.1) F(N) = 1 + r 

where r and t are positive parameters. No is the maximum nastiness (5.7) of the 
family of fitting curves. 

With this choice of F(N), the logarithmic derivative G(N), (5.4), becomes 

rt 
(6.2) G(N) 

N O + rN 

and we are now interested in simultaneous solution of the set of Equations (5.5), 
(5.6) for g and all the (kk, with this choice for the function G in (5.6). 

These equations can be solved on a computer by simple iteration: we choose 
some trial value N for the nastiness. This yields a trial value g through (5.6), 
g = G(N). Insert this trial g into (5.5) and solve (5.5) for the (kk. Insert these q~k 
into the argument of the function G in (5.6). This yields a new value of g. Keep 
going until the process converges. 

Our experience indicates that this simple iteration converges rapidly in most 
cases. The resulting solution gives values of g and the ~k which satisfy (5.5) and 
(5.6), i.e., which correspond to at least a local maximum of the criterion (5.3). 
I f  all initial values of N, in the whole range from N = 0 to N -- No, lead to one 
and the same final solution, then this solution is the true overall maximum of Q. 
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It sometimes happens, however, that we are led to one local maximum by starting 
from small N, and to quite a different local maximum by starting from N near 
No. The solution with small nastiness N is the sceptic's solution, such as (e) or (f) 
in Figure 3. The solution with nastiness N near No is the believer's solution, 
such as (a) or (b) in the Figure. In such a case, the computer is programmed 
to determine the actual value of the goodness of fit criterion Q for both solutions, 
and to select the solution with the larger Q. 

It is instructive to estimate in a rough manner the actual values of Q for these 
two types of solution. The sceptic's solution has N near 0, and thus F(N), equation 
(6.1), near unity. The chi-square value X is large however, given by equation 
(5.10) to a first approximation. Let us denote this chi-square value by X o. It is of 
course the largest value of X among all the fitting curves. We obtain the estimate 

(6.3) Q ~ exp ( - Xo) for the sceptic's solution. 

The other extreme, the believer's solution, has points q5 k close to the given points 
Yk, SO that the chi-square deviation is small. On the other hand, the nastiness 
of the fitting curve is now close to its maximum possible value, No, so that we 
obtain the rough estimate 

(6.4) Q ~ (1 + r) -t for the believer's solution. 

We must now make a choice, just when we wish to switch from belief to scep- 
ticism, or vice versa. Let us suppose that we are prepared to accept a chi-square 
value X1, but no higher value of X. We would then opt for the sceptic's solution 
in case Xo < X1, and we would opt for the believer's solution if Xo > X~. 

We can achieve this result automatically by choosing the parameter r in such 
a way that the estimates (6.3) and (6.4) become equal when Xo = X~. That is, 
if the degree of our scepticism is measured by a maximum acceptable chi- 
square value equal to X1, then we should choose the parameter r in (6.1) to 
equal 

(6.5) r = exp(X1/0 - 1. 

In this way, we have used the parameter r to measure the extent of our scep- 
ticism, and we remain with only one free parameter, t. 

We have made numerical experiments with t-values of ½, 1 2, and 4, with the 
following results: (1) If  t is large, say t = 4 and to a considerable extent already 
for t = 2, the resulting choice of best fit is "indecisive". Instead of opting in a 
clearcut way for either the sceptic's solution or the believer's solution, we find 
the iteration converging onto some intermediate solution which is an uneasy, 
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timid compromise satisfying nobody. (2) If  t is small, say t = ½, the process 
is decisive enough, with a sharp and clear crossover between nearly complete 
belief and nearly complete scepticism. But for too small values of t, the believer 
solution becomes "ultra-orthodox":  the differences ~ k  --  Yk between fitted values 
and given function values turn out to be much less than the errors e k. 

On the whole, choices of t between ½ and 1 lead to the most reasonable results. 
Since t = 1 leads to such a very simple functional form, we adopt t = 1 as our 
compromise best choice. With this choice, the criterion of goodness of f i t  is the 

quantity 

exp ( - X) 
(6.6) Q 

1 + rN/No 

where X is the usual chi-square deviation, N o is given by (5.7), and r is related to 
the maximum acceptable chi-square deviation, X l, through 

(6.7) r = exp (X1) - 1. 

We emphasize that once X1 has been chosen (corresponding to choice of a "con- 
fidence level" in conventional curve fitting procedures) there exist no further 
parameters for minimum nastiness curve fitting. The criterion (6.6) is quite definite 
and selects one unique best fit for any given set of points with errors. 

A great deal of additional work is required to bring minimum nastiness curve 
fitting to a level of technical elaboration comparable to the state of the art in 
polynomial curve fitting. We hope, however, that the present paper has demon- 
strated that minimum nastiness curve fitting is worth further investigation. 

As one example of possible further work, we mention the application to the 
smoothing of histograms: a histogram defines successive areas under the true 
function. We may associate the midpoints of the intervals in the histogram with 
values Yk corresponding to these areas, and obtain a minimum nastiness curve 
fit to these values. The resulting fitting curve is the integral of the desired function. 
Since the fitting functions in minimum nastiness curve fitting are analytic in a 
region surrounding the given interval of the x-axis, we can differentiate explicitly 
to obtain the desired function. 

Another application of minimum nastiness curve fitting may lie in the area of 
multi-dimensional scaling in psychology. [3]. There we need a smooth function 
relating "dissimilarities" to "distances" in an abstract space. The concept of 
nastiness may allow us to put the concept of "smoothness" of a function into 
more precise mathematical form, suitable for such applications. 

One of us (J.M.B.) is grateful to the John F. Kennedy Memorial Foundation 
for the Weizmann Institute of Science for the grant of a John F. Kennedy Senior 
Fellowship, during the tenure of which this work was done. 
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